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Abstract
This 2-year study implicates migratory songbirds in the initiation of 
an inland Lyme disease endemic area in southeastern Ontario. 
The spirochetal bacterium, Borrelia burgdorferi sensu lato Johnson, 
Schmid, Hyde, Steigerwalt & Brenner, which causes Lyme disease, was 
detected in blacklegged ticks, Ixodes scapularis Say, collected by 
flagging. Based on PCR amplification, 19 (33.3%) of 57 I. scapularis adults 
(males, females) were infected with B. burgdorferi. Since transovarial 
transmission of B. burgdorferi is nil in I. scapularis and white-tailed 
deer, Odocoileus virginianus Zimmermann, are not reservoir-
competent hosts, we suggest that songbirds are the mode of 
introduction of B. burgdorferi-infected I. scapularis. All of the natural 
abiotic and biotic attributes are present to establish a Lyme disease 
endemic area. Blacklegged ticks survived the winter successfully at 
the epicentre. We provide substantial evidence that migratory 
songbirds initially introduced Lyme disease vector ticks and B. 
burgdorferi spirochetes to this remote woodland habitat and initiated 
an established population of blacklegged ticks.

Introduction
The blacklegged tick, Ixodes scapularis Say (Ixodida: Ixodidae), is 

the primary vector of the Lyme disease-spirochete, Borrelia burgdorferi 
sensu lato (s.l.) Johnson, Schmid, Hyde, Steigerwalt & Brenner, east 
of the Rocky Mountains [1]. This blood-sucking, ixodid ectoparasite 
feeds on at least 144 different vertebrates (avian, mammalian, 
reptilian), including humans, and domestic and wildlife animals 
[2,3]. Immatures (larvae, nymphs) of I. scapularis parasitize at least 
76 different bird species, especially passerines (Order: Passeriformes), 
primarily perching birds (songbirds) [4-11]. This tick species has been 
collected from migratory songbirds as far west and north as the town 
of Slave Lake, Alberta [7] and, similarly, a B. burgdorferi-positive I. 
scapularis nymph was detached from a passerine migrant in central 
Saskatchewan (Tweedsmuir, SK) [3].

Lyme disease can have a multitude of clinical symptoms, including 
cardiac, cutaneous, endocrine, gastrointestinal, genitourinary, 
musculoskeletal, neurologic, cognitive, and neuropsychiatric [12-14]. 
If left untreated or inadequately treated, diverse forms [15,16] of B. 
burgdorferi can sequester and persist in immunologically deprived 
and deep-seated sites [17-24]; namely, ligaments and tendons 
[24,25], muscle [26], brain [27-29], bone [30,31], eyes [32], glial and 
neuronal cells [33,34], and fibroblasts/scar tissue [35]. Patients are 
often seronegative because standard commercial immunoassays (i.e., 
ELISA, EIA) for Lyme disease yield poor results with a sensitivity of 
44-56% in patients who have been infected for more than 4-6 weeks 
[36-40]. In addition to Lyme disease spirochetes, the blacklegged tick 

acts as a zoonotic vector of several human pathogens: Anaplasma 
phagocytophilum (human granulocytic anaplasmosis) [41], Babesia 
spp. (e.g., B. microti, human babesiosis) [42], Bartonella spp. (e.g., 
B. henselae bacteremia) [43-45], Borrelia miyamotoi (relapsing fever 
group spirochete) [46], deer tick virus (Powassan virus group) [47], 
Ehrlichia phagocytophila (granulocytic ehrlichiosis [E. equi group]) 
[48], and Mycoplasma spp. (e.g., M. fermentans) [49]. 

Certain songbirds are reservoir-competent hosts of B. 
burgdorferi. Using xenodiagnosis tests, Richter et al. [50] determined 
that the American Robin, Turdus migratorius L., can harbour B. 
burgdorferi in its body for 6 months and, as a result, engorging larval 
and nymphal I. scapularis can subsequently become infected. In 
southeastern United States, Durden et al. [8] cultured B. burgdorferi 
from skin biopsies of several passerines. As well, B. burgdorferi has 
been isolated from a Veery, Catharus fuscescens (Stephens) [51]; 
the House Wren, Troglodytes aedon (Vieillot) [52]; and American 
Robin [52]. Because transovaral transmission of B. burgdorferi is not 
present in I. scapularis [53], this mode of spirochetal transmission to 
eggs or larvae, is not apparent. Additionally, B. burgdorferi has been 
isolated from partially- and fully-fed I. scapularis larvae parasitizing 
songbirds, which compliments the fact that these avian hosts are 
reservoirs of infection, and can potentially initiate new Lyme disease 
foci [52]. Moreover, in Europe, Schwarzová et al. [54] similarly 
detected B. burgdorferi in the throat and cloacal cells from birds 
migrating through Slovakia; these findings also show that songbirds 
are B. burgdorferi reservoirs. 

Connecticut researchers [52] introduced the concept of passerines 
starting established populations of I. scapularis and B. burgdorferi 
spirochetes in new foci. When a heavily infested passerine releases 
several replete B. burgdorferi-infected, fully engorged I. scapularis 
in a suitable habitat, an enzootic network may be initiated. Of note, 
migrating songbirds are a flagship in the introduction of spirochete-
infected I. scapularis larvae and nymphs. Our study shows that 
songbirds can transport B. burgdorferi-infected I. scapularis into a 
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new geographic area, and provide the essential enzootic components 
to establish a Lyme disease endemic area.

Materials and Methods
Study area

The tick investigation was conducted on independently owned 
land (44.29N, 76.43W), which is located on the southern fringe of 
the Canadian Shield, west of Verona, Frontenac County, in eastern 
Ontario, Canada. This area has rugged, undulating topography with 
igneous rock outcrops that are interspersed with pockets of well-
drained, sandy, moraine-type topsoil, which is bordered by a shallow 
lake and random beaver ponds. The climate is temperate and, during 
the winter, the landscape is normally covered by a thick blanket of 
snow. The predominant mammals are: White-tailed Deer, Odocoileus 
virginianus Zimmermann; Eastern Cottontail, Sylvilagus floridanus 
(J. A. Allen); Beaver, Castor canadensis L.; Raccoon, Procyon lotor 
L.; Striped Skunk, Mephitis mephitis (Schreber); Eastern Chipmunk, 
Tamias striatus L.; Deer Mouse, Peromyscus maniculatus Gloger; and 
Northern Short-tailed Shrew, Blarina brevicauda Say. Deer trails are 
prominent throughout the area. 

The principal arboreal species include: Red Oak, Quercus rubra 
L; Shagbark Hickory, Carya ovata (Mill.) K. Koch; Bitternut Hickory, 
Carya cordiformis (Wangenh.) K. Koch; Ironwood, Ostrya virginiana 
(Mill.) K. Koch; Red Maple, Acer rubrum L; Sugar Maple, Acer 
saccharum Marsh.; Trembling Aspen, Populus tremuloides Michx.; 
and Red Dogwood, Cornus sericca L. The closest dwelling and road is 
2 km from this woodland epicentre.

Tick collection

In November 2012, a representation of 34 blacklegged tick adults 
(10 males, 24 females) were collected by flagging using white flannel 
cloth draped on a 2.1 m pole. Using fine-pointed, stainless steel 
tweezers, the ticks were put into vials and placed in a plastic ziplock 
bag with slightly moistened paper towel, and sent by express mailing 
for identification. Upon confirmation of identification, they were sent 
by overnight courier for PCR amplification. In May 2013, a total of 
23 blacklegged tick adults (12 males, 11 females) were collected for 
identification and PCR amplification.

Spirochete detection

Dead ticks were tested for B. burgdorferi s.l. using DNA extraction 
and PCR amplification of B. burgdorferi s.l. using gene primers of the 
outer surface protein A (OspA), whereas live ticks were cultured in 
BSK medium. The DNA detection protocols have been previously 
described [55-57].

Results
Our 2-year study revealed that I. scapularis overwintered 

successfully at this remote epicentre, and this tick species was in 
plentiful numbers the following spring. The B. burgdorferi infection 
prevalence was not only maintained from fall to the following spring,  
it actually increased. Overall, 19 (33.3%) of 57 blacklegged tick adults 
(fall 2012, 29.4%; spring 2013, 39.4%) were positive for B. burgdorferi. 
For the spring 2013 collection, 10 live cultures of B. burgdorferi were 
isolated.

Discussion
Our findings confirm a population of blacklegged ticks infected 

with B. burgdorferi in southcentral Frontenac County, Ontario. This 
new-found focal epicentre is 2 km from any road or dwelling, and 
the closest known cluster of B. burgdorferi-positive I. scapularis is 
approximately 25 km away [58]. A B. burgdorferi-infected larva can 
infect any small mammal population; however, at least 2 or more 
larvae or nymphs (one molts to a male, the other molts to a female) 
are the bare minimum number to initiate an established population. 
Because of their limited travel, mammalian hosts in these environs 
most likely were not involved in introducing B. burgdorferi.  For 
instance, P. maniculatus has a home range that averages 590 m2 [59]. 
White-tailed deer have been considered, but their home range is 
only 140 ha (radius, 6.7 km) [60]. In addition, although white-tailed 
deer are hosts of all 3 developmental life stages of I. scapularis [5], 
and help to amplify this tick, they are not competent reservoirs of B. 
burgdorferi [61]. Consequently, they are unlikely to have introduced 
spirochetes to this epicentre. Also, if a white-tailed deer happened to 
bring a fully engorged I. scapularis female to this locale, the replete 
female could not transmit B. burgdorferi to larvae through eggs 
because transovarial transmission is not present in this tick species 
[62]. Therefore, another mode of introduction for B. burgdorferi-
infected I. scapularis larvae and nymphs is needed. We suggest that 
migratory songbirds brought B. burgdorferi-infected I. scapularis 
immatures to this locale.

Capturing the actual moment when a migratory songbird released 
ticks into a new habitat, and started an established population, is 
virtually impossible. However, we can provide the basic parameters 
for such an event to occur. Any new habitat for I. scapularis must 
provide the basic abiotic (i.e., weather) and biotic (i.e., vegetation) 
components to sustain the developmental life cycle of the tick. 
First, this area must have ecological amenities that provide food 
(i.e., acorns, nuts, seeds) for small mammals (i.e., deer mice, eastern 
chipmunk, northern short-tailed shrew), medium-size mammals 
(i.e., striped skunk), and large mammals (i.e., white-tailed deer). 
Second, this northern locality must have adequate snowfall to provide 
an insulating blanket of snow during the winter. Third, migratory 
songbirds must have natural materials to build their nest for their 
young. This isolated area has all of these natural factors.

This habitat is conducive to sustaining an established population 
because it has several suitable maintenance hosts for all life stages 
of I. scapularis. Deer mice, which are plentiful in this locality, are 
suitable hosts for I. scapularis immatures, and support B. burgdorferi 
infectivity of this spirochetal zoonosis [63].  The northern short-tailed 
shrew acts as a common host for larval and nymphal I. scapularis, and 
also acts as a primary reservoir of B. burgdorferi [64,65]. Likewise, the 
eastern chipmunk is a competent reservoir of B. burgdorferi, and can 
hold spirochetes for at least 4 months [66]. As evidenced by the many 
deer trails in these environs, white-tailed deer are abundant, and these 
cervids act as maintenance hosts for all life stages of I. scapularis. 

Schauber et al. [67] indicate that acorn production and mouse 
abundance in the northeastern United States are a strong predictors 
of Lyme disease incidence. The white-tailed deer migrate to nut-
bearing groves because they are looking for acorns and nuts, which 
provide energy-boosting nutrients (i.e., carbohydrates, fats, protein, 
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and micronutrients).  As well, acorns act as a common food source 
for small mammal reservoirs (i.e., deer mice, eastern chipmunks, 
northern short-tailed shrews), and these small mammals help to 
bolster and perpetuate the life cycle of blacklegged ticks. Additionally, 
Jones et al. [68] indicate that an abundant acorn crop in the fall 
increases the number of mice and eastern chipmunks the following 
summer. Whenever there is an abundant autumn crop of acorns, 
white-tailed deer congregate and, as a result, I. scapularis larvae 
escalate the following summer [69]. When reservoir-competent 
small mammals and white-tailed deer comingle in the area of high 
acorn production, they increase the likelihood of maintaining both I. 
scapularis and B. burgdorferi in the Lyme disease ecosystem.

To augment an enzootic cycle of B. burgdorferi infection, the 
same songbirds inherently return to the same nesting areas the 
following year. At this time, birds can bring additional B. burgdorferi-
infected, immature I. scapularis and, consequently, amplify ticks and 
spirochetal infection. Based on the remoteness of this site, predation 
by house cats, Felis catus L., would be unlikely and, thus, this locale is 
a favourite nesting site for ground-frequenting songbirds. In Canada, 
cats kill an estimated 100-305 million birds per year, especially in 
human-dominated landscapes [70]. Therefore, this remotely-located, 
nut-bearing habitat provides all the enzootic factors to establish a 
population of I. scapularis infected with B. burgdorferi.

In our study, we collected I. scapularis adults. Since songbirds 
only become parasitized by larvae and nymphs, there is no possible 
way that these avian hosts could introduce adults in the spring. This 
area is normally covered by a thick blanket of snow from December 
to March when none of the motile stages of I. scapularis are questing. 
These ticks are in the leaf litter and humus layer over the winter, 
and are cozy under an insulating blanket of snow. Furthermore, I. 
scapularis ticks have antifreeze-like compounds in their bodies, and 
can withstand sub-zero ambient temperatures of -40ºC.

Upon arrival at the breeding grounds and nesting site, a passerine 
migrant can release several B. burgdorferi-infected larvae and nymphs 
into the leaf litter, which is populated with small mammals, especially 
rodents. These replete, songbird-transported immatures molt, 
and develop into infected larval and nymphal ticks in 5-7 weeks. 
The nymphs typically parasitize small mammals, and transmit B. 
burgdorferi to these hosts. In order to complete the developmental 
life cycle, the replete nymphs molt to adults. They commonly quest 
for large mammals and, during the fall or following spring, the 
female takes a blood meal, and the male and female mate. When 
fully engorged, the female drops to the leaf litter in the nut-bearing 
woodlot where there will be an abundance of future hosts for larval 
and nymphal progeny. In the spring (late April-May), the female 
normally lays 1000-2000 eggs on a well-drained forest floor. These 
eggs develop during the warm weather, and hatch in late-July and 
August and, subsequently, the larvae quest for wild birds and small 
mammals. Soon after the female lays eggs, she dies. Her energy-rich 
carcass acts as an attractant for songbirds and small mammals. 

The initiation of larval hatch occurs concomitantly with the death 
of the parent female that just laid eggs. Because the newly hatched 
larvae and female carcass are in juxtaposition, hosts are automatically 
drawn to this microhabit. The fermenting carcass gives off odoriferous 
gases that act as a magnet for small mammals and songbirds. The 

female carcass provides a nutritious source of carbohydrates, fat, 
protein, and micronutrients. An off-white fat pellet is present that 
is clearly visible in the posterior end of the idiosoma of the carcass. 
Over many millennia, evolution has developed this unique survival 
mechanism to link ectoparasitic ticks with ground-foraging hosts.

As hosts search for the odorous, female carcass, these designated 
targets are covertly ambushed, and parasitized by a hundreds of 
nearby larvae that hatched from the recently laid eggs. If hosts are 
spirochetemic, they can transmit B. burgdorferi spirochetes to the 
attached, blood-sucking larvae. Tactfully, as an innate survival 
technique, a replete larval or nymphal I. scapularis will not release 
from its host (songbird) until it senses odorant compounds (CO2, 
NH3, lactic acid, phenols) produced by its next host [71]. Sensing a 
potential host, the I. scapularis immatures release to the forest floor 
and, subsequently, become the initial building blocks of a 
blacklegged tick colony. Any I. scapularis larva, which is not 
successful in parasitizing a suitable host in autumn, can overwinter 
in the leaf litter and top soil of well-drained soils in the temperature 
zone of central and eastern Canada under a deep blanket of 
insulating snow and quest for a host the following spring.

Notably, migratory songbirds have the physical capability to 
transport I. scapularis immatures thousands of kilometres during the 
period of a complete blood meal [3]. Using light-level geolocators, 
Stutchbury et al. [72] tracked passerine migrants, and revealed they 
can travel at least 575 km/day en route from southern wintering 
grounds to northern breeding grounds during northern spring 
migration. These passerines could easily have introduced the initial 
seed stock of blacklegged ticks from hyperendemic Lyme disease 
areas along the East Coast and Hudson River basin, or Thousand 
Islands area to this northern epicentre. 

Many bird-tick studies exhibit multiple ticks on a passerine host. 
During a previous study [64], 19 nymphs of I. scapularis (denoted as 
I. dammini) were collected from an American Robin and, likewise, 21 
larvae on a Gray Catbird, Cumetella carolinensis (L.), and a Swamp 
Sparrow, Melospiza Georgiana (Latham). Additionally, multiple 
B. burgdorferi-infected I. scapularis nymphs were collected from a 
House Wren at a bird banding site in southern Ontario [73].

The fact that wild birds are reservoir hosts of B. burgdorferi sensu 
lato is clearly recognized around the world [74]. Not only do tick-
infested passerine migrants act as a bioresource in introducing B. 
burgdorferi-infected ticks, they have the reservoir capacity to transmit 
spirochetes during the tick-host blood meal. Additionally, avian hosts 
can act as genetic mixing bowls for diverse strains of Lyme disease 
spirochetes, and may precipitate the exchange of Borrelia genes, such 
as cross-species recombinant genotypes [74].

As a process of elimination, we know of no other logical way 
that this population of I. scapularis was started. Conceivably, B. 
burgdorferi-infected songbirds provide the mode to initiate this 
established population of blacklegged ticks. Collectively, our 
findings strongly suggest and support the involvement of migratory 
songbirds in initiating Lyme disease endemic areas. Ultimately, this 
Lyme disease endemic area is a public health risk because resident 
songbirds can disseminate B. burgdorferi-infected I. scapularis within 
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this region during the breeding and nesting season. 
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