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Abstract: Tick-borne zoonotic diseases have an economic and societal impact on the well-being of
people worldwide. In the present study, a high frequency of Babesia odocoilei, a red blood cell parasite,
was observed in the Huronia area of Ontario, Canada. Notably, 71% (15/21) blacklegged ticks, Ixodes
scapularis, collected from canine and feline hosts were infected with B. odocoilei. Consistent with
U.S. studies, 12.5% (4/32) of questing I. scapularis adults collected by flagging in various parts of
southwestern Ontario were positive for B. odocoilei. Our data show that all B. odocoilei strains in the
present study have consistent genetic identity, and match type strains in the GenBank database. The
high incidence of B. odocoilei in the Huronia area indicates that this babesial infection is established,
and is cycling enzootically in the natural environment. Our data confirm that B. odocoilei has wide
distribution in southern Ontario.

Keywords: Babesia odocoilei; piroplasm; babesiosis; ticks; Ixodes scapularis; parasitism; domestic cats;
domestic dogs; Canada

1. Introduction

Tick-borne zoonotic pathogens cause many diseases that have considerable medi-
cal, veterinary, and economic impact worldwide. In North America, Babesia odocoilei is a
single-celled microorganism that belongs to the genus Babesia (Apicomplexa: Piroplasmida:
Babesiiidae). This intraerythrocytic piroplasm infects terrestrial vertebrate hosts [1]. Clini-
cal manifestations of babesiosis range from a silent infection to a fulminating malaria-like
disease to severe hemolysis that can infrequently result in human death [2–12]. Babesia
infection is normally transmitted to humans by a tick bite; however, this babesial hemopar-
asite can be passed from infected individuals to others via blood transfusion [13–15], organ
transplantation [16], and maternal-fetal transmission [17,18]. Babesia that are pathogenic
to humans include B. crassa, B. duncani, B. divergens, B. microti, B. venatorum, Babesia diver-
gens-like MO-1, Babesia sp. KO1, Babesia sp. XXB/HangZhou, Babesia sp. TW1, and Babesia
spp. CA1, CA3, and CA4 [7,19–22]. Around the globe, there are at least 111 valid Babesia
species [1].

Members of certain biological families, such as cervids and bovids, are reservoir hosts
of B. odocoilei. Both feral and captive white-tailed deer, Odocoileus virginianus (Mammalia:
Cervidae), are reservoir-competent hosts of B. odocoilei [23–25]. As well, wapiti/elk (Cervus
elaphus canadensis), reindeer (Rangifer tarandus tarandus), and caribou (Rangifer tarandus
caribou) are native reservoirs of B. odocoilei [26].

Although it was initially believed that B. odocoilei was non-pathogenic [27–30], it is
now recognized as a cause of cervid babesiosis, a disease that can be fatal for cervids, such
as white-tailed deer, caribou and wapiti, particularly immunocompromised or excessively
stressed individuals [25,26,31]. More recently, B. odocoilei has been detected in bovids,
such as desert bighorn sheep (Ovis canadensis nelsoni), musk oxen (Ovibos moschatus), yak
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(Bos grunniens), and markhor goat (Capra falconeri), including areas outside of the range of
I. scapularis [32,33].

The blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is the principal vector of
B. odocoilei. This ixodid tick species parasitizes at least 150 terrestrial vertebrates (avian,
mammalian, reptilian), including humans, songbirds, and white-tailed deer [34,35]. Once
a host-seeking I. scapularis tick becomes infected with B. odocoilei [25,36–39], this babesial
infection can be sustained by transstadial passage (larva to nymph or nymph to adult) and
by transovarial transmission (female to eggs to larvae). Blacklegged ticks can perpetuate
B. odocoilei throughout all life stages [25,37–39]. East of the Rocky Mountains, I. scapularis
closely coincides with the distribution of white-tailed deer [25,27]. The wide dispersal of
B. odocoilei-infected ticks is facilitated by migratory songbirds, especially during northward
spring migration [35,40,41].

The primary aim was to determine the distribution of B. odocoilei in questing and
animal-derived I. scapularis ticks in southern Ontario.

2. Materials and Methods
2.1. Tick Collection

Questing ticks were collected by flagging low-lying vegetation in the southern part
of southwestern Ontario within the Carolinian forest region from 24 to 26 April 2019. At
a more northerly location in the Huronia area, veterinarians and technicians collected
attached, engorged ticks from domestic dogs and domestic cats from 2 to 27 May 2019.
These attached ticks were removed using superfine-tipped stainless steel forceps, and ticks
from each host were stored in a tightly sealed microtube containing 94% ethanol. Each
microtube was labelled with a tick identification number. A white, vinyl-backed flannel
cloth attached to a telescoping, aluminum pole was employed to collect questing ticks.
Blood-fed and questing ticks were identified to species by using microscopy and taxonomic
keys [34,42].

2.2. DNA Extraction, PCR, and Sequencing

To extract DNA from unfed ticks, an ammonium hydroxide protocol (unfed ticks) [35],
or the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s protocol for animal tissue was used. The resulting DNA was stored at
−20 ◦C until PCR was performed. Amplification of the 18S rRNA gene of Babesia was
performed as previously described using the BJ1 (5′-GTC-TTG-TAA-TTG-GAA-TGA-TGG-
3′) and BN2 (5′-TAG-TTT-ATG-GTT-AGG-ACT-ACG-3′) primers [43]. Amplicons were
visualized by UV transillumination on a 1% agarose gel containing GelStar nucleic acid
stain (Lonza, Rockland, ME, USA), and those that were 400−500 nucleotides in length,
were excised from the gel, and prepared for DNA sequencing to confirm Babesia presence
and species using the QIA amp DNA Kit (Qiagen, Valencia, CA, USA). DNA sequencing
was performed at the University of California Davis Sequencing facility using the Big Dye
Terminator cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) and PCR
primers.

2.3. Phylogenetic Analysis

End-reading errors were removed from sequences and, when possible, ambiguous
nucleotides were manually corrected. Sequences were compared to those published in
GenBank using the BLAST database search program (https://blast.ncbi.nlm.nih (3 Novem-
ber 2020). The phylogenetic tree was constructed based on select published sequences
of Babesia species (B. odocoilei, B. bovis, B. conradae, B. divergens, B. duncani, B. canis canis,
B. gibsoni, B. microti, and B. vulpes) downloaded from GenBank. Babesia bovis was used as
the outgroup species. All sequences were trimmed to the same length (445 nucleotides, in-
cluding those absent in some species), and were aligned using the MUSCLE algorithm [44].
Phylogeny was resolved using the maximum likelihood method in MEGA 10.0.5 [45]. This
general time reversible model facilitated gamma distribution and invariant sites (number
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of discrete categories equals five) was determined by jModeltest 2.1.10 [46]. Consensus
was achieved by bootstrapping based on 1000 pseudoreplicate datasets generated from the
original sequence alignments.

3. Results
3.1. Tick Collection

Between 24 April and 22 May 2019, a grand total of 53 I. scapularis adults (males,
n = 13; females, n = 40) were collected from 14 locations in southern Ontario). These
collections were conducted within two different forested areas (Great Lakes-St. Lawrence
and Carolinian). Flagging was done in the Carolinian forest region, whereas canine- and
feline-derived ticks were obtained from three veterinary clinics located in the Huronia area
(Figure 1). Collections of I. scapularis comprised of 32 ticks (males, n = 13; females, n = 19)
collected by flagging, and 21 females collected from 21 companion animals (domestic dogs,
n =17; domestic cats, n = 4).
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Figure 1. Map shows locations where Ixodes scapularis females were positive for Babesia odocoilei in
southern Ontario, Canada. Purple triangles designate positive ticks collected from domestic dogs
and domestic cats. Red dots represent positive ticks collected by flagging low-lying vegetation.

3.2. Babesia Detection

Of the 53 ticks, 35.8% (n = 19) tested positive for Babesia DNA (Tables 1 and 2). The
majority of positive ticks were from dogs (68.4%, n = 13), plus two from cats (10.5%), and
four by flagging (21.1%; Table 2). All positive samples were confirmed to be B. odocoilei
based on 99.72–100% similarity to sequences published in GenBank (Table 1). With the
exception of three male ticks collected at flagging sites (Dundas, Turkey Point, Wainfleet
bog), all Babesia-positive ticks were adult females (Table 1).
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Table 1. Detection of Babesia odocoilei in Ixodes scapularis adults collected in southern Ontario, 2019.

Number of B. odocoilei-Positive Ticks (%)

Source Female(s) Male(s) Total Tick(s)

General sampling
Cat 2/4 (50) 0 (0) 2/4 (50)
Dog 13/17 (76.5) 0 (0) 13/17 (76.5)
Vegetation 1/19 (5.3) 3/13 (23.1) 4/32 (12.5)
Cat and dog sampling
Barrie 2/2 (100) 0 (0) 2/2 (100)
East Wasaga 0/1 (0) 0 (0) 0/1 (0)
Orillia 1/2 (50) 0 (0) 1/2 (50)
Oro Medonte 3/3 (100) 0 (0) 3/3 (100)
Penetanguishene 2/3 (66.7) 0 (0) 2/3 (66.7)
Severn Township 1/1 (100) 0 (0) 1/1 (100)
Warmister 1/1 (100) 0 ((0) 1/1 (100)
Wasaga Beach 5/7 (71.4) 0 (0) 5/7 (71.4)
Woods Beach 0/1 (0) 0 (0) 0/1 (0)
Flagging vegetation
Dundas 03 (0) 1/3 (33.3) 1/6 (16.7)
Port Burwell 0/6 (0) 0 (0) 0/6 (0)
Thorold 0/3 (0) 0/3 (0) 0/6 (0)
Turkey Point 0/4 (0) 1/4 (25.0) 1/8 (12.5)
Wainfleet Bog 1/3 (33.3) 1/3 (33.3) 2/6 (33.3)

Table 2. Results of DNA sequence analysis and GenBank accession numbers of Babesia odocoilei detected in questing and
blood-fed Ixodes scapuaris ticks in southern Ontario, 2019.

Date Sequence BLAST Results GenBank

Tick ID Location Source Collected Length % of Type Strain Score E-Value Accession No.

CN19-2-2 Dundas flagging 24 Apr 263 100 521 7e-144 MW182495
CN19-5-2 Wainfleet Bog flagging 24 Apr 100 100 198 4e-47 MW182496
CN19-6-1 Wainfleet Bog flagging 24 Apr 163 99.37 307 1e-79 MW182497
CN19-8-2 Turkey Point flagging 25 Apr 152 100 301 7e-78 MW182498
CN19-79 Penetanguishene cat 02 May 265 100 525 5e-145 MW182499
CN19-80 Penetanguishene dog 14 May 212 100 416 2e-112 MW182500
CN19-86 Wasaga Beach dog 30 Apr 357 100 706 0 MW182501
CN19-87 Wasaga Beach dog 03 May 361 99.72 708 0 MW182502
CN19-88 Wasaga Beach dog 09 May 358 99.72 200 0 MW182503
CN19-89 Wasaga Beach dog 10 May 440 100 872 0 MW182504
CN19-90 Wasaga Beach dog 10 May 434 100 860 0 MW182505
CN19-91 Severn Township dog 07 May 440 100 872 0 MW182506
CN19-92 Oro Medonte dog 14 May 387 100 767 0 MW182507
CN19-93 Barrie dog 15 May 429 100 848 0 MW182508
CN19-94 Orillia dog 16 May 429 100 850 0 MW182509
CN19-95 Warmister dog 17 May 429 100 850 0 MW182510
CN19-96 Oro Medonte dog 19 May 429 100 850 0 MW182511
CN19-98 Oro Medonte dog 23 May 429 100 850 0 MW182512
CN19-99 Barrie cat 24 May 429 100 850 0 MW182513

Between one and eight ticks (mean = 3.79) were collected from each location, and
Babesia-positive ticks were collected from ten of the 14 sampled locations. The number of
positive I. scapularis ticks collected at each positive location in both forested area was low
(1–5), but prevalence ranged between 12.5–100% (mean = 65.06%; Table 1). Only ten of
the 19 B. odocoilei sequences were of ample quality and length to perform phylogenetic
analysis (CN19-89—CN19-99). These sequences were 100% similar to one another and to
three reference strains of B. odocoilei downloaded from GenBank (Table 2, Figure 2).
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Figure 2. Maximum likelihood phylogenetic tree of 18S rRNA sequences from Babesia positive Ixodes
scapularis ticks collected in southern Ontario in 2019. All sequences were trimmed to 445 nucleotides
in length (including those absent to some species) and aligned using the MUSCLE algorithm. Phy-
logeny was resolved using a gamma distribution with invariant sites, and consensus was achieved
by bootstrapping based on 1000 pseudoreplicate datasets generated from the original sequence align-
ments. Alphanumeric values in brackets denote published sequences. Babesia bovis is the outgroup
species. The scale bar signifies the percentage of genetic variation along tree branches. Sequences
from ticks are available in GenBank (accession numbers: MW182504−MW182513).

4. Discussion

Here we report the presence of Babesia in I. scapularis ticks from ten of 14 sampled
locations in Ontario, Canada, collected either by flagging low-lying vegetation or from
domestic cats and dogs (Table 1). Babesia DNA was detected in 19 (35.8%) of 53 collected
ticks. Our results are in concordance with previous studies conducted in the U.S.A. where
11−15% of the questing blacklegged tick adults collected from established populations
were positive for B. odocoilei [47,48]. Although the gender of I. scapularis adults may seem
disproportionate (Table 1), the ratio of males to females are balanced in nature genetically
reflecting a 50:50 ratio. Based on deer tracks along trails, we observed that an I. scapularis-O.
virginianus interface was present in each of the woodland and ecotone locations flagged.
The high incidence of B. odocoilei in I. scapularis ticks in the Huronia area suggests that an
epizootic, babesial infection is present in the local white-tailed deer population [23–25]. To
our knowledge, this is the first time that B. odocoilei has been detected in ticks collected
from dogs and cats in Canada. Researchers in Indiana reported one B. odocoilei-positive
I. scapularis in 15 adults collected from a domestic dog [49]. Globally, certain other Babesia
spp. (B. canis sensu stricto, B. gibsoni, B. microti, B. vogeli) can infect either cats or dogs [50].
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In addition, B. conradae is associated with canine-feeding ticks and host dogs [51,52]. Babesia
DNA, determined to be 97.8% similar to B. odocoilei, has been detected in ticks collected
from dogs in Japan [53], whilst B. vogeli and B. microti have been detected in ticks associated
with pet cats [54–56].

Babesia odocoilei can either be maintained in I. scapularis ticks by transstadial passage
and/or transovarial transmission. All B. odocoilei-positive ticks in the present study were
adults, and it is likely that they became infected during a previous developmental life stage
while feeding on an infected reservoir host. As we did not draw blood from domestic cats
and domestic dogs, we do not know if these companion animals play a role as reservoir
hosts of B. odocoilei. This aspect warrants further investigation.

During the past half century, several tick-pathogen studies in North America have
demonstrated that B. odocoilei has a wide distribution. In the U.S.A., the pathogen has
been reported in ticks and vertebrate hosts as far north and east as Maine [47,49,57], as
far south as Texas [58], and as far west as California [32]. The presence of B. odocoilei in
California is notable because it has been detected in desert bighorn sheep, a non-cervid
vertebrate host, which is outside the normal distribution of I. scapularis ticks [32]. Of
biogeographical significance, B. odocoilei has been detected in the western blacklegged tick,
Ixodes pacificus, and, thus, could be a vector infecting bovids in California. North of the
Canada−U.S. border, B. odocoilei has been reported in Ontario [35,39–41], Quebec [35], and
Saskatchewan [26]. Additionally, other epidemiological studies have reported B. odocoilei
causing fatal outcomes in bovid species in captivity [32,33].

Ecologically, the number of I. scapularis adults in the spring is lower than the full
complement of adults in the fall because the number of questing females goes down as
they parasitize hosts, and remain in quiescence until spring to lay eggs. By spring, the
number of adults is predictably lower. As I. scapularis females parasitize suitable hosts, the
number of questing females decreases.

Of epidemiological significance, B. microti has also been detected in the Huronia area
in the Ixodes cookei (groundhog tick) [39]. As I. cookei does not parasitize songbirds, B. microti
is most likely established in the area. Therefore, people may become infected with this
babesial piroplasm.

Songbirds play an important role in the wide dispersal of B. odocoilei-positive I. scapu-
laris [39–41]. Therefore, people do not have to visit an endemic area to contract babesiosis.
The symbiosis of blacklegged ticks and white-tailed deer in a sylvatic habitat provides
the strategic components for a B. odocoilei endemic area. White-tailed deer are hosts of
I. scapularis, especially males and female adults, and promote the propagation of this tick
species. Currently, there is no risk map in Ontario for Babesia, so there is no way to see
where these areas are located. Holding fast to the dogma that one must visit an endemic
area might hamper the assessment and whereabouts of these areas by epidemiologists
and healthcare providers. Any of the B. odocoilei-positive sites in southern Ontario may
have been initiated by songbirds infested with B. odocoilei-infected I. scapularis larvae and
nymphs. Migratory songbirds can transport bird-feeding ticks from as far south as equato-
rial South America [59–67], and potentially start a new foci of I. scapularis that is hundreds
of kilometres from its original source [68–71]. These established populations of I. scapularis
may unknowingly be infected with B. odocoilei.

Even though the pathogenicity in cats, dogs, and humans has not been clarified for
B. odocoilei, this piroplasm is in the same clade/group as Babesia divergens and Babesia
venatorum (Figure 2), both of which are pathogenic to humans [1,4]. In essence, healthcare
providers must be vigilant to look for human babesosis in symptomatic patients, especially
when bitten by blacklegged ticks.

5. Conclusions

We provide the first documentation of B. odocoilei in I. scapularis ticks collected from
domestic dogs and cats in Canada. Of 21 ticks collected from domestic cats and domes-
tic dogs, 71% were confirm positive for B. odocoilei. Babesia odocoilei-positive I. scapularis
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ticks collected by flagging low-level vegetation exhibited widespread distribution in On-
tario. Since white-tailed deer and songbirds transport B. odocoilei across the Ontario
landscape, vertebrate hosts do not need to visit an endemic area to become infected with
this babesial piroplasm.
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